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Abstract—Recently, several low and mid-level vision algo-
rithms have been successfully demonstrated at high-frame rate on
a low power-budget using compact programmable CPA (Cellular
Processor Arrays) vision-chips that embed a Processing Element
(PE) at each pixel. Because of the inherent constraint in the VLSI
design of these devices, algorithms they run are limited to scarce
resources, in particular memory – that is the number of registers
available per pixel. In this work, we propose an algorithmic
procedure to trade off the pixel resolution of a programmable
CPA vision-chip against the number of its registers. By grouping
pixels into “super-pixels” where pixel registers are interlaced, we
virtually expose more registers in software allowing to run more
sophisticated algorithms. We implement and demonstrate on an
actual device an algorithm that could not have been executed on
an existing CPA at full resolution due to its memory requirements.

I. INTRODUCTION

The need of low latency, low power automated vision
systems that meet real-world constraints gave rise to the design
of hardware devices allowing to directly perform computation
in the image plane of an optic system. These so-called vision-
chips capture light-intensity in a light-sensitive register which
value can be further processed through a processing unit (PU)
embedding a dedicated circuitry. Both the PU and the registers
are components of a single Processing Element (PE) usually
located at each pixel. Such a device can be used to perform
massive parallel computation and solely output meaningful
pre-processed data – such as the position of a tracked object
[1] – thus avoiding the bottleneck of transferring large amount
of data such as an entire frame from the image sensor to
another device equipped with processing capabilities.
In this work, we consider vision-chips operating in a Single
Instruction Multiple Data (SIMD) paradigm where a single
instruction is dispatched by a controller to all the PEs and
executed simultaneously on their own local registers. The VLSI
designs of these devices are subject to many physical and cost
constraints, consequently compromises have to be made. For
instance, increasing the complexity of the processing circuitry
at the pixel level is done at the expense of the fill-factor of
the photosensitive element. These design choices restrict the
hardware implementation of each PE to having, for instance,
only a couple of registers for computation and data storage.
Nevertheless, several vision-chip variants with different pixel
processing circuitries have been explored, and fabricated [2],
[3]. Specific designs of such devices feature PEs able to com-
municate with their immediate neighbourhood via a “shared
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Fig. 1: (a) is an example of the arrangement of pixels in a CPA
showing a pattern to group four pixels into super-pixels. (b) shows a
single register R at each PE, as designed on hardware. (c) is a view
where the register R has been subdivided into four “virtual” registers
R1, R2, R3 and R4 at each pixel of the super-pixel. One can remark
the CPA resolution is divided by four since there exists four “virtual”
registers only when considering a super-pixel, and a Ri can only be
accessed by a PE “i”. (d) is an alternative view showing the grouping
of four pixels into a super-pixel exposing now four “virtual” registers.

bus” or “register” [1], [4]–[7]. These Cellular Processor Arrays
(CPA) are very pertinent for many image processing routines
where information needs to be passed efficiently from one pixel
(a cell in the array) to another.
It has been recently demonstrated in simulation that these CPA
architectures are well-suited for message-passing algorithms,
for instance jointly inferring visual quantities to build mid-level
vision systems able to perform on-chip ego-motion estimation
[8]. However, the implementation on an actual vision-chip
requires more resources than what is constrained by its design.
The solution we propose is to trade off available resources on
the system in software: concretely by reducing its resolution
when “virtually” grouping PEs together in a super-PE.
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II. GROUPING OF PIXELS IN A CPA TO INTERLACE

ARRAY-VARIABLES

For the programmable SIMD mode CPAs we consider,
registers can be thought as forming an array of data that we
refer to as a data-plane. If each pixel has n registers, then
the device holds n data-planes. A data-plane is used to store
an array-variable, for instance the intensity as collected by the
light-sensitive registers could be stored in a data-plane while
one of the components of a spatial gradient from the light-
intensity would require another data-plane.
The grouping of pixels into super-pixels is done by splitting
one (or more) data-planes according to the pixel position on-
chip so that two pixels grouped into a super-pixel, using the
same real data-plane can be used to store two different array-
variables. This is what we call the interlacing. Each super-PE
exposes now more registers – n grouped PEs give n times
more registers –, equivalently more data-planes, which can be
used in more sophisticated algorithms.
On CPAs, a corollary of grouping the PEs together is the
change of topology: each PE at each pixel has now a different
kind of neighbourhood. While the same local registers for
different PEs in an ungrouped setting have the same “data-
type” as their neighbours, in a grouped setting PEs belonging
to super-PEs have neighbours sharing completely independent
pieces of information even though they are on-chip in the
same data-plane. As a consequence, a careful propagation of
information has to be done between registers on the CPA to
route it only to relevant places without compromising data on
which one does not directly operate.
The idea of clustering pixels and performing partial readout in
the data-planes was firstly evoked in [9], however neither any
procedure nor any implementation of this concept has been
demonstrated to our knowledge despite the flexibility such a
procedure offers to design CPA with more pixels and very
few registers that can be then used at lower resolution for
algorithms requiring more resources.
In the following we detail an example to group four pixels into
super-pixels allowing to interlace four array-variables into a
single data-plane. We define a way to arrange pixels to group
them into super-pixels, we show how to access the virtual
registers individually as well as how to keep the CPA property
of being able to shift information to the 4-neighbours. We
then identify two general components to be able to perform
these operations and discuss their role and their instantiation
in several CPA hardware.

A. Interlacing and operating on four pixels grouped into
super-pixels

1) To define a pattern to interlace four pixels grouped into
a super-pixel: As a concrete example, let us say we think of
each pixel of a CPA as being labelled with one of the four
integers/colors: 1 (white), 2 (light gray), 3 (dark-gray) and 4
(black) to produce an arrangement as seen in Figure 1a.
We will now consider each group of neighbouring pixels
constituted of the four different labels, as a super-pixel. If
each of the pixels has only one register R (the red array
in Figure 1b), each pixel in the super-pixel can be now
considered to have its own register Ri split from R as shown in
Figure 1c. Then the super-pixel has now virtually four registers
as depicted in Figure 1d that will be addressed by accessing
R “individually” at each pixel 1, 2, 3 and 4.
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Fig. 2: We show how to execute a shift operation on the CPA to
propagate information to the EAST: from the “virtual” register R1

of the super-pixel at position (x, y) to the “virtual ” register R1 of
the super-pixel at position (x + 1, y). The activity flag of the PEs
are shown with the following color code: green = “enabled” and red
= “disabled”. Arrows show the read/write routines that are executed
at each step, bold arrows are for the super-pixel of interest while
dashed-arrows show what happens for the neighbouring pixels when
executing the instruction on the CPA (SIMD mode).

2) To access each of the virtual registers individually: For
the PEs grouped into super-PEs we need to be able to operate
on a single label independently. For instance, retrieving the
content of the register R of pixels 1 – denoted R1 – consists in
operating on the register while “masking” the PEs labelled 2, 3
and 4 to prevent them from working and modifying the content
of their own R now they are assumed to contain interlaced
array-variables. Because the SIMD mode dispatches the same
instruction to all the PEs, when operating on a register/data-
plane all the PEs are active irrespective of their label “1”,
“2” etc. As a consequence the CPA device needs to have a
mechanism to be able to operate only on a subset of its pixels
–with a particular label– by “masking” the other ones.

3) To propagate the content of the virtual registers individ-
ually: In order to expose to the user a CPA which preserves
its property of being able to propagate information to its
immediate neighbours, a special care needs to be taken for the
“shifting operation” since the topology of the array is changed
with the interlacing. Precisely, a pixel labelled 1 does not have
a 1 neighbour; it means that to propagate information to one
of its neighbour it needs to cross a 2 neighbour (if one wants
to propagate to EAST or WEST) or a 3 neighbour (if one
wants to propagate to NORTH or SOUTH). Because actual
connectivity in the CPA only exists between four-adjacent
neighbours, we need to take care of shifting first to 2 (resp. 3)
in a temporary register when propagating to the EAST/WEST
(resp. NORTH/SOUTH) and then shift the content of this
temporary register once more to end up into the register of
the target 1 pixel. Again, at the chip-level only the R register
exists, therefore one has to be careful to “mask” pixels on
which one does not want to operate when shifting the content
of R1 not to also modify the content of R2, R3 and R4 as a
side effect.
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row = (x x x x x x x x)
col =  (x x x x x x x 0)
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Fig. 3: Four examples of codewords to initialize masking registers
from the IPU. (a) and (b) show periodic addressing of rows and
columns. (c) shows the periodic selection of a single processor. (d)
shows the selection of a particular super pixel in a four pixel grouping
setting.

The three steps procedure to shift the content of a register to
the EAST from a pixel at (x, y) to a pixel at (x + 1, y) is
described in the following pseudo-code and is illustrated in
Figure 2:

Require: R (a register), Masking registers (based on the
labelling), NEWS (a communication “shared” register)

1: NEWS ← R // NEWS is shared between adj. neighbs.

2: Mask 1, 3 and 4
3: NEWS ← WEST // NEWS2 takes the WEST neighb.’s value

4: Unmask all
5: Mask 2, 3 and 4
6: R ← WEST // R1 takes the WEST neighb.’s value

7: Unmask all

B. Components needed in a CPA to operate on virtual registers
when pixels are interlaced

To execute the three-steps procedure we have just outlined,
two components are necessary to support the pixel-independent
operations of the CPA such as the “individual” access of a
particular register and the “shifting” of the content of a register
to the immediate neighbours:

An activity flag: is a bistable component whose state
indicates whether the PE must operate or not. In the SIMD
mode we consider, the activity flag is originally implemented
for branching-instructions. Typically one might want this ac-
tivity flag to be loaded from masking registers that are pre-
initialized with appropriate patterns corresponding to labellings
of the PE. These patterns specify the possible configurations
of activity: for instance all the “1” labelled PEs must operate
(mask=“off”) while “2”, “3”, and “4” must not (mask=“on”).

Masking registers: store the patterns of activities that
are used to group pixels together. They are loaded in the
activity flag to allow individual masking of pixels within the
super-pixel and thus allow to perform individual operations on
the virtual registers. The masking registers would typically be
pre-initialized pixel-wise as described previously. If a circuit
performing boolean functions can be used on the masking
registers, then only few of them are in fact needed for a four
pixel interlacing: one with “0’s” (off = PE does not operate) for
all even columns of the CPA, another one for the rows and a
last one to store any combination of the two other ones. All the
other combinations can be trivially computed using operators
like (AND, NOT) or (OR, NOT) that have to be present in the
boolean circuit. In case masking registers do not exist on-chip
then a mechanism needs to be found to change the state of the
activity flag of the PE based on predefined activity patterns.
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B
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Digital registers
(for masking)

Processing 
Element (PE)

Analogue registers
("virtual", interlaced) 

A1 B1
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... ...

A4
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Fig. 4: An instance of a four-pixel interlacing on a sketched version
of SCAMP-5 is represented, non-interlaced registers are not shown. In
the analogue registers A and B we store using our interlacing scheme:
A1 = Itx,y as well as A2 = It−1

x,y the intensities for the current and
past frame, B1 = V t

x,y the temporal gradient, and A3 = Gt
x,y|x,

A4 = Gt
x,y|y the two components of the spatial gradient.

III. IMPLEMENTATION AND RESULTS

A. An implementation on SCAMP-5 vision-chip

We implemented our interlacing procedure on SCAMP-
5, a 256 × 256 CPA with mixed analogue/digital data-paths
consisting of 7 analogue registers (among which one should
be reserved for shifting), and 14 single-bit digital registers. A
more exhaustive summary of the device’s characteristics can
be found in [1]. We used the same scheme we presented in
Section II where 4 pixels and their PEs are grouped into a
super-pixel yielding four times more registers. Thus, when
all analog registers are interlaced, it results in a total of 24
“virtual” register-arrays at a resolution of 128× 128.

Activity flags and masking registers: exist as such in
SCAMP-5. The activity flag can be directly fed with one of
the 14 single-bit digital registers. In our implementation we
use two of these registers that we initialize such that one
has even columns (resp. rows) filled with 1’s as shown in
Figure 3a and 3b. Since SCAMP-5 embeds circuitries to negate
¬(·) and to disjunct ∨(·, ·) digital input registers, other con-
figurations can be created when needed by operating on these
two pre-initialized single-bit digital registers. In practice, the
values of these registers are initialized by the IPU (Instruction
Processing Unit), on a FPGA instructing the CPA vision-chip.

To initialize the digital registers from the IPU: We use
the global readout architecture described in [9] to select PEs
by generating appropriate codewords to address the array. Each
of them is 8-bits so that it is possible to access each of the 256
rows/columns. The codewords are binary, 0’s and 1’s are used
as “do-care bits” and indicate the address of a particular PE.
A peculiarity is the introduction of “x” symbols as “don’t care
bits” which select all the PEs regardless of the bit-value at the
“x” position in the address, this provides a flexible mechanism
to perform block and periodic selection. Useful examples of
codewords for the instantiation of our masking registers are
shown in Figure 3.
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B. Results: an algorithm using the interlacing

As an example to demonstrate the interlacing procedure
we proposed in this work we implemented an algorithm to
compute and store 6 array-variables on a SCAMP-5 vision
chip: the current intensity frame, the past time step intensity
frame, the temporal-gradient, the spatial gradient of the inten-
sity (2 components). In addition, we wrote an algorithm to infer
back the light-intensity from the gradients to demonstrate that
our interlacing scheme can be used with more sophisticated
procedures such as one solving a partial differential equation
on the programmable chip.
Note that given that SCAMP-5 offers “only” 6 non-reserved
analogue registers [1] it would not be possible to implement
an algorithm that can simultaneously compute and store the
aforementioned quantities since it would already use 6 registers
for the storage. It would not even leave a single temporary
register to be used for computation purposes. As an example,
a subtraction on SCAMP-5 requires an additional temporary
register if one wants to implement an error cancellation scheme
to alleviate the mismatch existing between registers [10].
A simplified view of the interlacing and the mapping of the
quantities on the SCAMP-5 registers is represented in Figure 4.
We use a 4-pixel interlacing for two registers: A (red) and B
(blue) to obtain 8 “virtual” registers instead of 2 (8 = 2 reg. ×
4-pix. interlacing). The other registers are not interlaced and
are used “as is”, we do not represent them on the figure.

Computing the spatio-temporal gradients of the light-
intensity is achieved by using standard 1-forward differences
as discrete approximations, yielding for the spatial gradient:
�Gt
x,y = (Gt

x,y|x, Gt
x,y|y)T = (Itx+1,y − Itx,y, I

t
x,y+1 − Itx,y)

T

and for the temporal gradient: V t
x,y = Itx,y − It−1

x,y . Both
these quantities need to shift information on the CPA to
be computed, thus exhibiting the shifting procedure of the
interlacing. Inferring back the ligth-intensity from the gradi-
ents is performed by solving iteratively the Poisson-equation:

�Itrec,x,y = �∇ · �Gt
x,y , which needs to shift the variable Itrec in

all directions and operate on two data-planes: Itrec and �Gt.

To check the consistency of our interlacing procedure we
transfer the frame readings of the two interlaced registers on a
computer on which we perform their deinterlacing to visualize
them. The software to deinterlace them is trivial and simply
consists in reading the interlaced frames by skipping non-
appropriate pixels. It could also be done in hardware by the use
of a periodic selection as a readout [9]. In Figure 5 we show
both a direct full-frame readout of two interlaced registers from
our SCAMP-5 setup and the deinterlaced frames.

IV. CONCLUSION

We presented a procedure to trade off the resolution of a
CPA against the number of its registers by grouping n PEs
at the pixel level in super-PEs. These super-PEs have n times
more registers. Each of them can be efficiently addressed and
accessed by masking PEs we do not want to operate on by
using an activity flag. Masking registers and activity flags are
common among the CPA architectures we surveyed [1], [6],
[7], [11], [12] even though their implementation varies. We
showed it is possible to preserve the property of CPAs to
shift information to their neighbours by alternatively masking
PEs in the super-PEs and shifting their content within and
across the super-PEs. Also, we demonstrated on an actual

(a) (b)

Fig. 5: (a) shows a full-frame readout of the interlaced registers A and
B on SCAMP-5. (b) shows the mire and as examples, the quantities

Itx,y , | �Gt
x,y|, V t

x,y , Itrec,x,y de-interlaced from the registers A and B.

device that the use of the interlaced PE scheme we introduced
in this work allows us to execute an algorithm which could
have not been implemented otherwise due to the lack of
memory resources for storage and computation. We think that
this procedure to trade-off the resolution of CPA vision-chips
against more registers offers the opportunity to create devices
built with many pixels and few registers, that we can trade-
off a-posteriori in software with the help, for instance, of
compilers to make this interlacing scheme and the addressing
of PEs within super-PEs transparent to the user.
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