
Kernelized Synaptic Weight Matrices

Lorenz K. Muller 1 Julien N.P. Martel 1 Giacomo Indiveri 1

Abstract

In this paper we introduce a novel neural net-
work architecture, in which weight matrices are
reparametrized in terms of low-dimensional vec-
tors, interacting through kernel functions. A layer
of our network can be interpreted as introduc-
ing a (potentially infinitely wide) linear layer be-
tween input and output. We describe the theory
underpinning this model and validate it with con-
crete examples, exploring how it can be used to
impose structure on neural networks in diverse
applications ranging from data visualization to
recommender systems. We achieve state-of-the-
art performance in a collaborative filtering task
(MovieLens).

1. Introduction
Neural Networks have a large number of free parameters
and often training algorithms need to choose between a
range of near optimal value assignments for those parame-
ters. This choice can be difficult, because optimality with
respect to a training set does not guarantee good behavior
on unseen, similar data (especially when there are many
free parameters). This defines overfitting. To address this
problem, regularization techniques are widely used in Neu-
ral Network optimization to help training procedures find
generalizable solutions.

In this paper, we show that by expressing the weights of
a neural network layer as the kernel interaction of low-
dimensional vectors of free parameters, we can embed
the weight matrix of a layer in some (potentially high-
dimensional) feature-space; the embedding is controlled
by the choice of the kernel function. This technique pro-
vides a structural way to regularize weight matrices.
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1.1. Related Work

There exist many approaches that reparametrize the weight
matrix of a neural network. (Schmidhuber, 1997) and
(Gomez & Schmidhuber, 2005) learned weights for a neural
network by training either small programs or another neural
network respectively to generate them. The approach of
training a neural network to generate weights for another
network can take many forms and reoccurs for example in
the work of (Stanley et al., 2009; Ha et al., 2016; Fernando
et al., 2016). In (Koutnik et al., 2010) the weight matrix of
a neural network is decomposed by a discrete cosine trans-
form (DCT) and learning is performed directly on the DCT
parameters. Several recent papers propose different types of
reparameterizations using various forms of matrix product
decomposition (Denil et al., 2013; Moczulski et al., 2015;
Tai et al., 2015).

Many methods have been proposed to ensure that at end of
the training of a neural network the weights fulfill some
desired properties: Weight-decay (or L2 regularization)
(Krogh & Hertz, 1992) makes large entries in the weight ma-
trix costly, encouraging ‘simple’ models; drop-out (Srivas-
tava et al., 2014) (the inclusion of multiplicative Bernoulli
noise) performs model averaging for appropriate network
architectures, prevents co-adaptation of different weights,
and can be interpreted as letting networks approximate deep
Gaussian processes (Gal & Ghahramani, 2016); low-rank de-
composition of weight matrices (Sainath et al., 2013) (anal-
ogous to separable convolutions in ConvNets (Jaderberg
et al., 2014)) is primarily used for computational speed-up
and memory footprint reduction, but also has a regularizing
effect. As we shall see in this work, low-rank decomposition
is a special case of the method we propose in this paper.

In contrast to these approaches, our method allows the im-
position of low-dimensional structure onto the network. We
will show on several examples that the low dimensional
embedding of the network weights does not only reduce the
number of free parameters in a network, but has the advan-
tage of increasing its interpretability as well as allowing for
structural regularization.

1.2. Core Idea

Instead of assigning an individual, free weight-parameter
between each input and output neuron of a neural network
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layer, we associate with each input and each output a vector
of free parameters that we think of as a location in a low-
dimensional space. The weight between two units is then set
to be some fixed function of the distance between those lo-
cations (or more precisely a weighted kernel-function of the
location vectors). A possible choice of kernel would be that
neurons that are far away from each other are unconnected,
neurons that are close to each other are strongly connected.
Thus, the function of a layer is to produce a smooth kernel
function, centered at the input locations, which is sampled
at a few points by the output neurons (namely at their loca-
tions).

2. Theory
2.1. Definition: kernelNet

We define a d-dimensional kernelized neural network (d-
kernelNet) as a hierarchical function approximator on inputs
x⃗(0) and outputs x⃗(N) of the form:

x(l)j = fj

(

∑

i
�(l)i K(u⃗

(l)
i , v⃗

(l)
j )x

(l−1)
i

)

. (1)

where super-scripts are layer indices, the functions fj are
non-linearities, �i are scalar parameters, and K(⋅, ⋅) is a
kernel function that corresponds to an inner product, in
some embedding space; i.e.

K(u⃗, v⃗) =
⟨

�(u⃗), �(v⃗)
⟩

= ⟨u⃗∗, v⃗∗⟩ (2)

with the embedding function � ∶ ℝd → ℝd∗ . The d dimen-
sional vectors u⃗, v⃗ are the free parameters of the model and
u⃗∗, v⃗∗ denote their embedded counterparts u⃗∗ = �(u⃗) and
v⃗∗ = �(v⃗) of dimension d∗.

Note that this is essentially a neural network layer, where the
weight matrix W has been replaced with a sum of weighted
kernels.

2.2. Relation to Fully-Connected Neural Networks

In the special case of setting � to the identity (and by con-
sequence K(⋅, ⋅) to the dot-product) and setting �i = 1, we
obtain a fully-connected neural network, into each of whose
layers a linear layer of a size d has been interposed. Con-
sider the activation of such a layer, before the non-linearity
(as we consider a single layer, we left out the superscript of
�, u and v for readability):

x(l)j =
∑

i
�iK(u⃗i, v⃗j)x

(l−1)
i =
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�iukix

(l−1)
i

Equation (3) describes a fully connected neural network
layer with an intermediate layer, whose neurons with linear
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Figure 1. Illustrations to visualize the “virtual” layer introduced in
(a) Equation (3) and (b) Equation (4)

activation function are indexed by k, as illustrated in Fig-
ure 1(a). We have connection matrices uki, vjk to and from
the linear layer. Alternatively we could interpret this as a
product decomposition of the full weight matrix between
x(l) and x(l−1). The dimension d in this case is the rank
of the ‘effective’ weight matrix from x(l−1)i to x(l)j . Such
product decompositions are a well-known approach to neu-
ral network regularization and compression (Sainath et al.,
2013).

For choices of � other than the identity, we obtain a virtual
linear layer of dimension d∗ (that is potentially much greater
than d), and whose connection matrices are constrained by
�. We compute the activation x⃗(l) before the activation
function of the layer:
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∑
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where we used Eq. 2 and the Hermitian form of the inner
product (note that M� is necessarily symmetric positive
definite and is induced by �).

In Equation (4) we can see that the proposed substitution
corresponds to the insertion of a linear layer with unit acti-
vations z⃗. The connections to this layer are u∗ki and from this
layer Ωjk as illustrated in Figure 1(b). These matrices are
dependent on the free parameters as well as �, which deter-
mines their structure: Notably the index k runs over the di-
mensions of the embedded vectors u⃗∗, v⃗∗; � prescribes how
the finite entries of v⃗, u⃗ make up these potentially infinite
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Figure 2. (a) Schematic comparison of a Kernelized and a standard synaptic weight matrix (b) Visualization of the activation of a layer
with a two dimensional RBF Kernel of a 3 × 2 weight matrix. At the locations u⃗i we input a kernel (here a Gaussian) scaled by the input to
unit i and �i. At the locations v⃗i we read out the height of the kernel sum.

dimensional vectors. The dimensionality of this embedding
depends on the choice of � or in practice K(⋅, ⋅). However,
we never need to explicitly evaluate � nor perform the dot
product in d∗.

The idea of using a kernel-function to get high-dimensional
interactions between low dimensional vectors without need-
ing to compute in the high-dimensional space, is known
as the ‘Kernel-Trick’ in the kernelized machines literature,
e.g. kernelized SVMs (Scholkopf & Smola, 2001). In such
kernelized SVM classifiers, instead of computing the dot-
product between data points x⃗ and centroids c⃗i (that are
more usually called support vectors) of standard SVMs one
evaluates a kernel function K(x⃗, c⃗i). However this kernel
takes data (x⃗) as one of its arguments (the other one being
a centroid, which in the case of SVM is also a data-point),
while in our case both arguments are parameters.

In analogy to the standard fully-connected neural network
layer, we can regard the kernelNet-layer as a fully-connected
layer, whose weight matrix has been reparameterized by the
parameters u⃗, v⃗ that are “decompressed" by a kernel func-
tion K(⋅, ⋅). Notably the number of parameters of such a
reparametrized weight matrix is only 

(

d ⋅ (m + n)
)

rather
than (m ⋅ n) (with m the dimension of the input layer and
n the dimension of the output layer) as seen in Figure 2.
Hence, with our reparametrization, the number of parame-
ters is reduced, as long as d is less than half of the harmonic
mean of m and n: d < m⋅n

m+n =
1
2(m, n).

If the kernel function used in a kernelNet layer is differen-
tiable, it can be trained through stochastic-gradient descent
algorithms and its variants (see experiments in Section 3).

2.3. Radial Basis Function Kernels

Some kernel functions can be visualized easily (at least for
a low dimensional d) and we will see that consequently also
the input to neurons in a layer that uses this kernel can be
visualized. A notable example of this is the Radial-Basis-
Function (RBF) kernel, which has the form:

K(u⃗, v⃗) = � ⋅  
(

D(u⃗, v⃗)
)

(5)

where  is a function  ∶ ℝ+ → ℝ and D(⋅, ⋅) is a distance
and � ∈ ℝ. Then we can interpret the d-KernelNet layer
as follows: Input channels place a kernel scaled by their
activation (and by a basis weight �) in a d dimensional space
centered at u⃗i, output neurons read the sums of these kernels
at v⃗j . For an illustration see Figure 2.

2.3.1. GAUSSIAN RBF KERNELS

The Gaussian RBF kernel

K(v⃗, u⃗) = exp(−||u⃗ − v⃗||22) (6)

is of theoretical interest because its embedding function �
is well-known and maps into an infinite dimensional space
(Scholkopf & Smola, 2001). Furthermore outputs of this
kernel can be interpreted as a similarity measure (it maps to
1 for identical vectors and asymptotically approaches 0 for
very distant vectors).

2.3.2. FINITE SUPPORT RBF KERNELS

RBF kernels whose support is finite can be used to impose a
variable degree of sparsity (in a “L0" sense) on the effective
connectivity of the embedded network layer; this can be ap-
plied to a non-kernelized network by expressing an effective
weight matrix as the Hadamard-product of a unconstrained
matrix and a finite-support kernel matrix.
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Consider an embedding as above with v⃗j fixed on a grid
with grid constant b. We can then use a finite support kernel

Kfs(u⃗i, v⃗j) = max
(

0, 1 − a ⋅D(u⃗i, v⃗j)
)

(7)

whereD(⋅, ⋅) is a distance. By scaling a and bwe can choose
the maximal number of input neurons any given output
neuron can get input from. Alternatively v⃗j can remain free
and a cost term of e.g. the form

R = �0
∑

ij
(K(u⃗i, v⃗j))2, (8)

can be introduced, measuring the overlaps between “bumps",
in which �0 will control the degree of sparsity of the trained
model (see experiments in Section 3.5).

A model of the form of Equation (7) must, by construc-
tion, find a decomposition into independent sub-parts: Each
input channel can only affect the activity of a few output
channels. As the model becomes deeper, however, these
sparse channels get mixed, so that for random connectivity
the probability of an output to connect to a given 1st layer
input, increases exponentially with the depth of the model.

3. Experiments
In the following experiments we demonstrate on some ex-
amples, how kernelNets can be used in practice. We in-
vestigate the effect of using different kernel functions (Sec-
tion 3.1), show how to incorporate prior knowledge into
the network parameters (Section 3.2), create extensible data
visualizations (Section 3.3, 3.4) and achieve state-of-the art
performance on the MovieLens dataset (Section 3.5), while
reducing the computational complexity of the model.

3.1. Impact of Effective Dimensionality

Here we evaluate the performance of three kernelNets of
the same structure as a function of the dimensionality d, but
using different kernels, whose corresponding embedding
� maps to spaces of different dimensionality d∗. Namely
we use a dot-product kernel (embedding dimensionality
d∗ = d), a second degree polynomial kernel (embedding
dimensionality d∗ = 1

2 (d+1) ⋅ (d+2)) and a Gaussian RBF
kernel (embedding dimensionality d∗ is infinite independent
of d).

All networks were trained using the ADAM learning rule
and a range of hyperparameters (learning rate and l2 reg-
ularization); for each network the best mean performance
over 5 repetitions is shown.1

In Figure 3 we see that kernels, whose corresponding em-
bedding function � projects into a higher dimensional space,

1code available in supplement

Figure 3. Comparison of identical kernelNets with different ker-
nel functions. Kernels corresponding to higher dimensional em-
beddings work better for very low dimensional parametrizations.
Errorbars indicate the standard error from five repetitions.

lead to better results for very low dimensional parametriza-
tion (low values of d). At high dimensionality the dot-
product kernel (corresponding to the inclusion of a linear
layer) catches up, and even slightly overtakes the other ker-
nels, probably due to the fact that it is easier to optimize.

Notably it is thus more memory efficient to use a higher di-
mensional kernel; given some target performance, a higher-
order kernel will often achieve it with fewer parameters. In a
setting where memory look-ups dominate the computational
cost, higher-order kernels are a preferable alternative to the
commonly used dot-product kernel in model compression.

3.2. Incorporating Channel Relationships

In some situations the vectors u⃗, v⃗ need not be initialized
randomly: If there is a known low-dimensional relationship
between the different input channels, it can be beneficial to
incorporate such knowledge in the choice of initial u⃗, v⃗.

A concrete example is image data for which there is far
greater correlation between nearby pixels than between very
distant pixels. This distance-dependent correlation is a use-
ful piece of information that can be incorporated into a
model. In a kernelNet, this can be achieved by initializing
u⃗, v⃗ on a 2 dimensional grid.

A kernelNet initialized on a 2D grid with a RBF kernel,
could be thought of as a convolutional neural network, in
which each layer has only a single kernel, but this kernel
changes slowly across the image; as a consequence there is
no translation equivariance in the kernelNet. See Figure 4
for an illustration of receptive fields in the first layer of a
network trained on MNIST. With this intuition it becomes
apparent that it may be helpful to instantiate several such
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Figure 4. Architecture of a kernelNet for image classification. Dotted lines indicate 2D RBF kernelized connection matrices, an array of
which is visualized on the left. At the bottom an MNIST digit is input, at the top is a fully-connected softmax layer, between are 2D RBF
kernelNet-layers, either initialized with or without knowledge of the input pixel locations.

A-priori known pixel-locations Acc.
no 98.89 %
yes 99.03 %

Table 1. Test set classification accuracy on MNIST of the 2-
kernelNet in Figure 4 making use of prior knowledge of pixel
locations or not. Adding the prior knowledge improves the perfor-
mance. The performance is good for a non-convolutional network
trained without data-augmentation.

2D grids in parallel (analogous to having multiple filters in
a single layer of a ConvNet), see Figure 4 for the resulting
network architecture.

In Table 1 we compare the performance of kernelNets using
spatial information (by setting the initial u⃗, v⃗ appropriately
and keeping them fixed) against the same network lacking
this information (randomly initialized u⃗, v⃗, trained) in an
MNIST classification task. Adding prior information in the
architecture indeed improves performance of the network.

An interesting consequence of interpretable u⃗i, is that they
permit the incorporation of interpretable noise into the net-
work: When u⃗i corresponds to a pixel location, adding noise
to it can be viewed as a model of uncertainty about the lo-
cation of the pixel. This may be beneficial for architectures
akin to (Gal & Ghahramani, 2016).

3.3. Extensible Data Visualization

In this section we use a kernelNet-layer to create an exten-
sible 2D data embedding to create t-SNE-like (Maaten &
Hinton, 2008) data visualizations.

We build a deep, fully-connected network that contains
a single kernelNet-layer in the middle. We choose a 2D
RBF-kernel to enforce that neurons in the kernelNet-layer
assume a two dimensional spatial organization, and fix the
parameters v⃗ to lie on a grid (to facilitate visualizations

like in Figure 6). Furthermore we equip this layer with the
following non-linearity, chosen to ensure sparsity (which
in conjunction with the spatial organization of the synaptic
matrix leads to spatially unimodal activations)

f (x⃗) = max
(

0, x⃗ − (� ⋅ x̂ + (1 − �) ⋅ x̄)
)

, (9)

where x̂ is the maximal value of x⃗, x̄ is its mean value, and
� is an interpolating parameter controlling sparsity (for well-
behaved activations this approximates a percentile clipping
function). The full network layout is [784 − 2000 − 2000 −
2500 − K1600 − 2000 − 2000 − (10∕784)], where all lay-
ers are fully connected, except for the one prefixed with a
‘K’, which is a kernelNet layer (for further details please
consult the supplement). From the activations of this layer
we construct a 2D embedding of the input: The location to
which a particular input to the network is mapped for our
data embedding, is the weighted sum of the locations of the
hidden units, where the weight is the activation of the unit.
We refer to this as the center of mass (c⃗) of that input

c⃗ =
∑

i xiv⃗i
∑

i xi
(10)

In Figure 5 we see a 2D map of MNIST digits constructed
by such a network trained with two different costs and fi-
nal layers: An autoencoder (Bengio et al., 2013) (with per
pixel cross-entropy), and a classifier (with categorical cross-
entropy). Notably the shown digits are test data and have
never been seen by the network. In contrast to e.g. t-SNE
(Maaten & Hinton, 2008) this method thus is naturally exten-
sible beyond the training set (though there exist extensible
variants (van der Maaten, 2009)). Furthermore our method
distinguishes itself by the fact that the embedding can be
based on any cost function. The layers preceding the ker-
nelNet layer, learn a mapping from the input space to the
latent space sampled (at locations v⃗) by the kernelNet units;
the layers following the embedding layer, learn a mapping
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(a)

(b)

Figure 5. Embedding of unseen (test set) MNIST digits using a
kernelNet-layer. (a) Trained as an autoencoder (without labels) (b)
Trained as a classifier (with labels). The black, dashed window is
also shown in a different representation in Figure 6. The left figures
show the digits with points placed at their location according to
Eq (10) while the right figures show the images of the digits placed
at those locations.

Figure 6. Visualization of part of the latent space constructed by the
kernelized layer when presented with an artificial, shifted Gaussian
input, traveling through the black dashed window in Figure 5.
Larger Image in supplement.

between the latent space –in which the units of the ker-
nelNet layer live– to the output. This second part of the
network thus mitigates between the cost-function and the
embedding.2

When the whole network is trained as an autoencoder, the
decoder part operates as a map from 2D Gaussian kernels
(shifted according to Equation (9)) to the space of MNIST
digits. Figure 6 illustrates what digit the decoder constructs,
for an artificial, shifted Gaussian input, whose center is
slowly translated in the 2D kernelized space. Notably, the
network produces sensible outputs at a very fine granularity.

From a conceptual point of view, this network shares simi-
larities with variational autoencoders (Kingma & Welling,
2013) or adversarial autoencoders (Makhzani et al., 2015) in
that it learns the mapping (and its inverse) of a data space to
a low dimensional latent space. We encourage a comparison
of Figure 6 with Figure 2 of (Makhzani et al., 2015). In these
other works, though the method is different, coordinates in
the latent d-dimensional space are explicitly represented
by a layer with d units; these units are constrained by an
additional cost term, to sample from a desired distribution.
In this work, we use the structural constraint of a weight
matrix lying in a low dimensional kernel space to achieve a
similar outcome.

3.4. Pre-trained Network Visualization

Here we visualize the action of a pre-trained network (a
convolutional ResNet (He et al., 2016)) by copying it up to
some prespecified depth and adding on top a fully-connected
layer (with 500 units), a 2D-RBF kernelNet-layer (with 900
units) and a classification layer (a 10-way softmax). We
then train the newly appended part of this truncated network
with the same cost as the original network and visualize
the activation in the embedding layer as described in the
previous section (the lower part of the network remains
unchanged)

Note that the embedding layers are trained to optimize the
same cost (categorical cross-entropy) as the original net-
work. Indeed the output of the embedding layer is suffi-
ciently informative to reach an equally good (or slightly
better) classification as the original network (see Table 2).
The resulting embeddings (created as in the previous sec-
tion) are shown in Figure 7.

These visualizations contain similar information as a confu-
sion matrix would, but more intuitively presented, showing
how well the various classes are separated from each other.
Figure 7 shows how the classes overlap increasingly more,
as we visualize the network action for lower layers.

2Code available in the supplement.
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(a) (b) (c)

Figure 7. (a) Embedding of test-set CIFAR-10 images created by an RBF Kernelized layer stacked onto a CIFAR-10 pre-trained, 51-layer
ResNet without the final classification layer (b) like previous, but the last 11 layers of the ResNet were removed (c) last 21 layers removed
[Best viewed in color]

Network kept layers Addit. Layers Acc.
ResNet (n=5) 32 0 92.3 %
ResNet + ker 31 3 92.6 %
ResNet + ker 21 3 90.5 %
ResNet + ker 11 3 82.3 %

Table 2. Classification performance of the pre-trained truncated
ResNets used for the visualizations in Figure 7.

3.5. Recommender Systems

Recommender systems typically operate on sparse high-
dimensional data. For instance, one aims at predicting movie
ratings for a user based on millions of other users having
each seen a small subset of thousands of movies (Lam &
Herlocker, 2012). In such settings, it is a common assump-
tion that the sparsely observed matrix entries, from which
one ought to generalize, can in some way be represented in
a low dimensional space. Indeed, movie-ratings supposedly
correlate with a relatively small number of features: the
combination of an actor playing in it and a movie genre for
example. As data is expected to be best explained by such a
low dimensional model it seems this is a well-suited setting
for kernelNets.

3.5.1. DATASET

We train our models to predict movie ratings of the
MovieLens-10M (ML-10M), MovieLens-1M (ML-1M) and
MovieLens-100K (ML-100K) datasets (Harper & Konstan,
2016). These datasets comprise (10 million / 1 million /
100 thousand) ratings of (10681 / 3706 / 1700) movies by
ca. (71 / 16 / 1) thousand users respectively, on a scale
of r ∈ {1, 2, 3, 4, 5} (ML-10M include half ratings). The
datasets are highly sparse (density 0.013 / 0.045 / 0.059). We
randomly designate 10% or 20% respectively of the given

ratings as validation data (so chosen to match the models
we compare to). The validation data is not used in training
and used alone in the reported error computation. Reported
performances average over five such random splits. We
report the root-mean-square error (Equation (11)).

Ermse =
√

∑

i
(pi − ri)2∕N, (11)

where pi is the predicted rating, ri is the true rating. N is
the number of validation samples.

3.5.2. MODEL

Our model is an item-based autoencoder very similar to
(Sedhain et al., 2015), but the weight matrices W,V are
reparameterized. Firstly we use a kernelNet-Layer with the
following kernel (which is not positive semi-definite, but
works well in practice)

K�(u⃗, v⃗) = tanh(u⃗ ⋅ v⃗) (12)

secondly we use the Hadamard-product of a dense connec-
tion matrix with a kernelized weight matrix, with finite-
support kernel (as in Eq. (7)), to obtain sparse connection
matrices. The full model then is

ℎ(r⃗, �) = f
(

W ⋅ g
(

Vr⃗ + �⃗
)

+ b⃗
)

(13)

where the weight matrices either take the form

Vij = �iK�(v⃗i, u⃗j) (14)

Wij = �iK�(s⃗i, t⃗j). (15)

or the form using Kfs (defined in Eq. (7)), that we will refer
to as ‘sparse fully-connected’:

Vij = �ijKfs(v⃗i, u⃗j) (16)

Wij = �ijKfs(s⃗i, t⃗j). (17)
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Method ML-10M ML-1M ML-100K
LLORMA 0.782 0.833 0.898
GC-MC 0.777 0.832 0.910
I-CFN 0.777 0.832 -
I-AutoRec 0.782 0.831 0.895*
I-AutoRec (2) 0.770* 0.830* 0.895*
CF-NADE (2) 0.771 0.829 -
KernelNet (1) - 0.838 0.898
KernelNet (2) - 0.836 0.901
Sparse FC (1) 0.784 0.830 0.890
Sparse FC (2) 0.769 0.824 0.894

Table 3. Comparison of various methods on MovieLens tasks; the
mean RMSE of the predicted ratings is given (lower is better) in
our case from five CV folds (Sparse FC std. err. < 0.0005 for
ML-1M, ML-10M and < 0.005 for ML-100K), training validation
split 90/10 (ML-1M, ML-10M) and 80/20 (ML-100K). Numbers in
brackets indicate number of hidden layers used. Architectures from
this work follow the second horizontal line. *Our implementation.

As in (Sedhain et al., 2015) for optimization we use the
L-BFGS-B (Zhu et al., 1997) and RPROP (Riedmiller &
Braun, 1993) optimizers to minimize a regularized square-
error, the regularization term added to the cost is

R = �2
(

W 2
ij + V

2
ij

)

,

and in the sparse fully-connected case

R = �2

(

∑

ij
�ij +

∑

ij
�ij

)

+�0

(

∑

ij
K(v⃗i, u⃗j) +

∑

ij
K(s⃗i, t⃗j)

)

,

One may think of �2 as the L2 regularization and �0 as the
sparsity “L0” regularization parameters. For the kernelNet
we use d = 50 and for the sparse fully-connected case d = 5.
All hidden layers have size 500.3

3.5.3. RESULTS

In Table 3 we report the mean validation RMSE of 5 runs in
which each time a randomly drawn 10% of the ML-1M and
ML-10M dataset and 20% of the ML-100K dataset were
used as validation data and compare to the following meth-
ods: LLORMA (Lee et al., 2016), GC-MC (van den Berg
et al., 2017), I-CFN (Strub et al., 2016), I-AutoRec (Sedhain
et al., 2015) and CF-NADE (Zheng et al., 2016). We cite
the performance of the models trained without information
outside ratings (such as movie genres, user age, etc.) as we
did not use such information either.

Table 4 further shows comparisons and highlights the
gained efficiency in terms of multiply-accumulate opera-

3Code available in the supplement.

Method Parameters MACs ML-1M
I-AutoRec (1) 6.05 M 3.03 M 0.831
I-AutoRec (2) 6.30 M 3.28 M 0.830
I-KernelNet (1) 0.67 M 3.03 M 0.838
I-KernelNet (2) 0.72 M 3.28 M 0.836
Sparse FC (1) 6.70 M 2.77 M 0.830
Sparse FC (2) 7.00 M 2.23 M 0.824

Table 4. Here we highlight how the two proposed reparameteri-
zations reduce the number of free parameters (KernelNet) or the
expected number of MACs required (Sparse FC) for a prediction
(assuming 10 random rated Movies and dense prediction on ML-
1M).

tions (MACs) (i.e. lower number of non-zero entries in the
weight matrix) thanks to the here proposed parameterization.
The parameter �0 allows trading-off Number of MACs for
performance; the table shows the best performing model.
Our model (Sparse FC (2)) shows state-of-the-art perfor-
mance, while decreasing the number of MACs required for
its evaluation by ca 30% compared to fully-connected, unal-
tered I-AutoRec model. The performance gain is especially
pronounced for the intermediate size dataset.

4. Conclusion
We presented a novel neural network layer structure, based
on kernel-approximations of the synaptic weight matrix.
We detailed the mathematical relationship of the proposed
kernelNet to standard fully-connected layers. Furthermore
we demonstrated state-of-the-art performance on various
MovieLens datasets (in terms of generalization MSE), us-
ing an Autoencoder whose weight matrices were sparsified
using finite-support kernels, which additionally decreased
the computational cost at inference in terms of multiply-
accumulate operations. Finally we gave some illustrative
examples with further possible applications, including a
natively extensible data visualization technique that can
be trained to reflect any cost function. KernelNets give a
new approach to imposing structure on neural networks,
regularizing and sparsifying them and for making the in-
ner workings – also of pretrained networks – more easily
interpretable.
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